sábado, 9 de octubre de 2010

Gases Ideales.

ECUACIONES DE ESTADO
El estado de una cierta masa m de sustancia está determinado por su presión p, su volumen V y su temperatura T. En general, estas cantidades no pueden variar todas ellas independientemente.
Ecuación de estado:
V = f(p,T,m)
El término estado utilizado aquí implica un estado de equilibrio, lo que significa que la temperatura y la presión son iguales en todos los puntos. Por consiguiente, si se comunica calor a algún punto de un sistema en equilibrio, hay que esperar hasta que el proceso de transferencia del calor dentro del sistema haya producido una nueva temperatura uniforme, para que el sistema se encuentre de nuevo en un estado de equilibrio.
Ley de los gases ideales
La teoría atómica de la materia define los estados, o fases, de acuerdo al orden que implican. Las moléculas tienen una cierta libertad de movimientos en el espacio. Estos grados de libertad microscópicos están asociados con el concepto de orden macroscópico. Las moléculas de un sólido están colocadas en una red, y su libertad está restringida a pequeñas vibraciones en torno a los puntos de esa red. En cambio, un gas no tiene un orden espacial macroscópico. Sus moléculas se mueven aleatoriamente, y sólo están limitadas por las paredes del recipiente que lo contiene.
Se han desarrollado leyes empíricas que relacionan las variables macroscópicas. En los gases ideales, estas variables incluyen la presión (p), el volumen (V) y la temperatura (T). A bajas presiones,las ecuaciones de estado de los gases son sencillas:
La ley de Boyle-Mariotte afirma que el volumen de un gas a temperatura constante es inversamente proporcional a la presión.
p1.V1 = p2.V2
La ley de Charles y Gay Lussac afirma que el volumen de un gas a presión constante es directamente proporcional a la temperatura absoluta.
V1/T1 = V2/T2
Otra ley afirma que a volumen constante la presión es directamente proporcional a la temperatura absoluta.
p1/T1 = p2/T2
Resumiendo:
p1.V1/T1 = p2.V2/T2 = constante
Definiendo las condiciones normales de presión y temperatura (CNPT) como, 1 atmósfera y 273 °K, para el volumen que ocupa un mol de cualquier gas (22,4 dm ³), esta constante se transforma en:
constante = 1 atmósfera.22,4 dm ³/273 °K.mol = 0,08205 atmósferas.dm ³/°K.mol
Y se define R como la constante de los gases ideales:
R = 0,08205 atmósfera.dm ³/°K.mol
La combinación de estas leyes proporciona la ley de los gases ideales, también llamada ecuación de estado del gas ideal:
p.V = n.R.T
donde n es el número de moles.

No hay comentarios:

Publicar un comentario